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Abstract. The “hybrid protein model” is a fuzzy model
for compacting local protein structures. It learns a
nonredundant database encoded in a previously defined
structural alphabet composed of 16 protein blocks
(PBs). The hybrid protein is composed of a series of
distributions of the probability of observing the PBs.
The training is an iterative unsupervised process that for
every fold to be learnt consists of looking for the most
similar pattern present in the hybrid protein and
modifying it slightly. Finally each position of the hybrid
protein corresponds to a set of similar local structures.
Superimposing those local structures yields an average
root mean square of 3.14 A. The significant amino acid
characteristics related to the local structures are deter-
mined. The use of this model is illustrated by finding the
most similar folds between two cytochromes P450.

Key words: Protein block — Unsupervised classifier —
Fold similarity

1 Introduction

Predicting the 3D structure of a protein sequence from its
amino acid sequence is not an easy task without
knowledge of the 3D structure proteins that share high
sequence similarity rates. Proteins with high homology
rates can be treated by homology modeling based on
physicochemical scales and geometric constraints. These
modeling techniques often rely on statistical methods
[1-3]. When there are no proteins with high homology
rates, ab initio modeling uses simulations to search for the
most probable protein. The results of such modeling are
constantly improving [4, 5], but the modeling is often
limited to small proteins. There are other approaches;
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they include threading, which involves assessing the
compatibility of the target sequence and various protein
structure fragments [6-9]. All these modeling techniques
require the initial use of a nonredundant protein dat-
abase. Databases with a known rate of sequence [10, 11]
and structural similarity [6, 12] are currently available.

The aim of this article is to present a method that
compacts a protein structure database into one “‘hybrid
protein”. The learning step uses a structural alphabet.
Various structural alphabets have been defined, each
composed of a different number of fold clusters, 6 for
Fetrow et al. [13], 4-7 for Rooman et al. [14], 12 for
Camproux et al. [15, 16], 13 for Bystroff and Baker [17],
and 100 for Unger et al. [18] and Schuchhardt et al. [19].
We chose to use 16 protein blocks (PBs), five Ca in
length. This alphabet approximates protein 3D struc-
tures with reasonable accuracy, and we have already
used it in a Bayesian prediction method [20]. It encodes
the protein structure database to be analyzed.

Because proteins have common local structures of
various length, we tried to stack those structures locally.
The process consists of building a concatenation of local
structures that share common and distinct parts. In fact,
the possible variations of the PB content can be ex-
pressed by a probability law for the 16 PBs. Accordingly,
this stacking of the local structures results in a “hybrid
protein”, i.e., a series of probability laws that gives the
occurrence of observations of each PB type at each po-
sition. A hybrid protein is represented by a matrix, the
dimension of which is 16 x N (N denotes its length).
Compared with conventional clustering and the defini-
tion of a partition into independent subsets, the hybrid
protein characterizes a series of structurally dependent
subsets: that is, it maintains the sequentiality of the local
structures. The main purpose of this approach is to stack
all the fragments of the local structure database into the
hybrid protein.

After training with the database, every local structure
of every protein is located in a given position of the
hybrid protein. The hybrid protein thus obtained has
particularities in terms of its structures and its amino
acid sequences. This approach allows similar local



structures to be classified in a given site. We assessed the
training by computing the root mean square deviation
(rmsd) for every type of local structure compacted in the
hybrid protein. We then computed and analyzed the
amino acids associated with each local structure to
evaluate the specificity of each site. The relations be-
tween the amino acid distributions of the hybrid protein
and the PB distribution for each site were analyzed. As
an illustration, we describe certain parts of the hybrid
protein structurally and point out some characteristics of
the amino acid distributions associated with them. Fi-
nally, we present one application of the hybrid protein:
the search for similar protein local structures in two
cytochromes P450.

2 Materials and methods

2.1 Database of encoded 3D protein structures

The database contains 553 nonredundant proteins with a sequence
similarity of less than 25% [10, 11] (i.e., 118 915 amino acid resi-
dues). The dihedral angles ¢ and y describing the protein backbone
were computed. We ignored the variations of the angle w; they are
often slight and are directly related to the other two [21].

With an unsupervised classifier that takes into account the de-
pendence between the successive local folds along the proteins, we
had previously determined a set of local prototypes, called PBs, to
approximate the protein backbones locally. This structural alpha-
bet, or PB set, described in Table 1 PBs m and d are the prototypes
of the central o helix and the central f§ sheet, respectively. Their
repetitive structure conformations are standard; the average num-
bers of repeats are 2.74 for PB d and 6.74 for PB m. PBs a to ¢
primarily represent f-sheet N caps and e and f, represents C caps; g
to j are specific to coils, k and 1 to o helix N caps, and n to p to their
C caps. This categorization is crude and provides only a partial
view of the PB locations in the protein folds. In particular, the PBs
considered in the category ““f-sheet N caps” (from a to c) are really
different from one another; they also occur in coils. The particular
utility of such an alphabet is that it enables several different N and
C caps to be found for the two regular secondary structures; it also
has four PBs mainly present in coils. An example of superimposed
fragments for each PB is shown in Fig. 1 [22]. Our structural al-

Table 1. Structural alphabet. The 16 protein blocks (PBs) obtained
with their frequencies in the database, the root mean square
deviation (rmsd), the average number of repeats (anr), and a crude
clustering according to the standard three-state alphabet

PB Frequency (%) rmsd (A) anr Label

a 3.93 0.52 1.01 N-cap f

b 4.58 0.51 1.00 N-cap

c 8.63 0.51 1.28 N-cap f

d 18.84 0.48 2.74 p

e 2.31 0.54 1.11 C-cap f

f 6.72 0.50 1.00 C-cap f8

g 1.28 0.74 1.05 Mainly coil
h 2.35 0.62 1.04 Mainly coil
i 1.62 0.56 1.01 Mainly coil
j 0.96 1.03 1.01 Mainly coil
k 5.46 0.59 1.00 N-cap «

1 5.35 0.63 1.01 N-cap «

m 30.04 0.43 6.74 o

n 1.93 0.61 1.03 C-cap o

o 2.60 0.60 1.02 C-cap o

p 3.41 0.46 1.00 C-cap o to N-cap f
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phabet thus allows a reasonable approximation of the 3D struc-
tures of the proteins. In fact, 50% of the angles ¢ and y are
approximated with a difference of fewer than 21° and less than 3%
with a difference of more than 90°, relative to reality. Globally, the
average rmsd is 0.58 A. This alphabet has also been used to predict
local protein structure with a Bayesian approach [20].

For the present study, we encoded the complete proteins of the
database into series of PBs (Fig. 2a). Each protein structure is split
into a series of overlapping fragments, each defined by five con-
secutive carbons Co,,_», Co,,—y, Catpy, Cotyi 1, and Cayyp. All these, in
turn, are described by a series of eight angular values, V (¥,_,,
Duts Vot Gus Vs Dusts Wosts ¢uyn). Hence, the attribution of a
protein fragment to a PB is based on a maximal similarity criterion.
The metric is a Euclidean distance called rmsd on angular values,
computed from dihedral angles [19]. Thus, the database is com-
posed of 116 703 PBs (Fig. 2b). The goal of the “hybrid protein
model” (HPM) is to use the connections between the PB sequences
to characterize the series of dependent local structure clusters of ten
PBs.

2.2 “Hybrid protein model”
2.2.1 Definition

2.2.1.1 The hybrid protein. To compact local structure databases,
we developed a novel training approach called the HPM. The hy-
brid protein is a chimeric protein composed of N sites and for
which every position 7 is defined not by one PB, but by a probability
distribution f;(b,), with b, denoting one of the 16 PBs
x=12,...,16andi=1,...,N).

The learning steps of the HPM are summarized in Fig. 2. The
hybrid protein trains by optimally locating every local structure of
the database composed of L PBs (L is a user-fixed parameter) in a
region of this protein and then by modifying the distributions lo-
cated in this region (Fig. 2c—f). The hybrid protein stacks all the
similar local structures in a given position and creates a fuzzy
prototype of this subset of folds. The principal advantage of the
HPM is that it conserves the overlapping between the consecutive
structure prototypes.

2.2.1.2 Location of the local structure in the hybrid protein. The
learning step consists of computing for a local structure, F, a score,
S;, at each position i of the hybrid protein (Fig. 2c):

k

Si=) _ Inlfiu-1(by)]
=1

=~

where &k denotes the index associated with a PB position in F
(k=1,2,...,L). Each local structure, F is defined by L consecutive
blocks {b7,55,...,b;} (in our study L = 10 PBs and thus represents
14 Ca). The score S; (i.e., the logarithm of the likelihood of ob-
serving the local structure, F, in a given site i) measures the simi-
larity between the local structure and a given region of the hybrid
protein; this region is characterized by a subset of PB distributions
(indices: i,i+1,...,i+ L — 1) (Fig. 2d). The most similar local
structure prototype is determined by searching for the position iy,
the index for which S; is maximal. That is, iy = argmax|S;] (Fig. 2e).

2.2.1.3 Local modification of the hybrid protein. The positions iy to
ip + L — 1 will be slightly modified to increase the likeness of this
part of the hybrid protein to the local structure, F (Fig. 2f):

if b= b (i.e., the PB at position & in the local structure), then

o)+

fio+k*1(b) l+a )
if b # b (i.e., the other PBs at position k), then
.fl‘(H’k*l (b) - Ll(b) .

1 +o
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Fig. 1a—p. Superimposition of fragments of the structural alphabet. The backbone is superimposed with atoms Ca, N, O, and C along the

five amino acids

The symbol < denotes ‘“‘calculated value replaces previous val-
ue.” The learning coefficient « is equal to ag/(1 + #/v), where o
is the initial rate of learning (e.g., ap = 0.1 in our study), ¢ is the
number of local structures of L blocks already introduced in the
training, and v is the number of local structures in the database.
The training is progressive and thus needs to examine the entire
local structure database C times. For example, C =15 in our
study, and steps c—f in Fig. 2 must be performed 15 times for
every local structure of the database. A complete database
reading is called a cycle. In the first cycle, the training coefficient,

o, is kept constant (¢ = a), so the hybrid protein will be sub-
stantially modified [23].

2.2.1.4 Initialization. The hybrid protein is initially defined by a
series of N PB distributions f;(b,). These are almost identical be-
cause f;(by) = f(by)(1 + €), where f(by) is the frequency of the PB
b, in the database and ¢; is a random value in the range [—71; +1] (in
our study, 7 is fixed at 0.20). We readjusted f;(b,) to obtain a total
sum of 1 per site i. The hybrid protein is close to this since the Nth
site is continuous with the first site.
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2.2.2 Interpretation step

Each site i of the hybrid protein is a complete set of local structures
of length L. This site maintains its continuity with the contiguous
site i — 1. Consequently sites i and i — 1 have L — 1 distributions in
common.

2.2.2.1 Motifs and occurrence matrix at every position. To quantify
the importance of each amino acid at each site, the amino acid
occurrences are computed, by the simple method of counting for
each series of L PBs associated with one site s the corresponding
series of L residues in a window of range [+L/2: fL/2]. These
occurrences were normalized into a Z score: Z’ = (n/ —n)/ \/n_’
where 7' is the observed number of amino acid’a in window posi-
tion j and !, is its expected number (1), = Ni{q(a)}, with N; and
{q(a)} denotlng, respectively, the number of local structures at
position i and the observed frequency of amino acid « in the data-
base. Hence, positive Z scores (respectively negative) correspond to
overrepresented (respectively underrepresented) amino acids at
certain positions of the window.

2.2.2.2 Entropy for quantifying the diversity of the PBs along the
hybrid protein. Each site of the hybrid protein is defined by a
probability distribution over the 16 PBs. An entropy can be com-
puted to quantify the diversity of the PBs at every site:

H; = — Zf, ) In[fi(b)] ,

where i denotes the position of the site, b a PB type, and f; the
corresponding PB distribution. Thus, a lower entropy value is as-
sociated with sites (or a zone of sites) dependent on a limited
number of PBs.

2.2.2.3  Kullback—Leibler — asymmetric  divergence profile for
quantifying the amino acid distribution specificity. After building
the hybrid protein, we studied the specificity of the amino acid
distribution of the central residue of the local structure patterns.
We collected each entire local structure (i.e., series of L protein
blocks) located at each site of the hybrid protein. We studied the
specificity of the residue by comparing its amino acid frequencies
with those observed in the database. We used relative entropy, also
known as the Kullback—Leibler asymmetric divergence measure

(KLd) [24]:
a
()

pz7 Zpl

where a denotes a given amino acid. This quantifies the contrast
between the amino acid frequencies observed in the central residues
p;:{pi(a)},—, 2 and a reference probabilistic distribution
q{g(a)}. In our study, the reference distribution q{g(a)} is the
probability of each amino acid type in the database. The results are
assessed by a y? test, since the quantity N;.K(p;,q) follows a »°
distribution, with N; the number of local structures associated with
the site i. Thus, the positions with a highly specific amino acid
distribution are associated with significant values.

2.2.2.4 Similarity clusters within the hybrid protein. Here we de-
scribe how to search for similar sites according to their amino acid
composition and to study the relation between this composition
and the protein block type. First, the amino acid distributions
observed along the hybrid protein, normalized into Z scores, are
classified with a k-means clustering method [25] that allows a par-
tition to be determined into a fixed number of clusters. Next, the
sites belonging to a given cluster, called a similarity cluster, are
compared according to their PB composition. This study allows us
to determine the level of dependence between the amino acid dis-
tributions and the PB composition of the sites along the hybrid
protein.

2.2.3 Search for similar local structures between two proteins
with a HPM

A hybrid protein is interesting because it compacts a structural
database. Moreover, it can be used to find similar local structures in
two different proteins. The first step is to convert the 3D structures
of both proteins into our structural alphabet. Next, the local
structures encoded with the structural alphabet are searched along
the hybrid protein. Thus, each series of positions characterizes the
3D structures. To find the structurally similar protein zones, a
dotplot is computed. The Boolean matrix (or dotplot) is built ac-
cording to a rule of position index identity: set to 1 when the same
position of the hybrid protein is observed in the two encoded
proteins, otherwise 0. The dotplot is filtered by selecting diagonals
of longer than G, which is initially set high, to extract the longest
local structures. Then, by progressively reducing this parameter,
shorter local structures are selected in protein regions not covered
by previously defined local structures. Assuming that the proteins
are structurally similar, the search is limited to local structures
present in a nearby protein region (i.e., for position ¢ of the first
protein the search for similar structures is carried out in a zone
[c — 0, ¢ + 0] for the second protein and inversely). In our study, 0 is
fixed at 50 residues; hence, the rmsd is computed to assess every
pair of similar local structures that is found. This approach allows
us to search for structurally similar local structures with low
sequence identity.

3 Results
3.1 The hybrid protein

3.1.1 General observations

The results of the training after 15 learning cycles (i.e., C
value) are reported in Fig. 3. The composition of the
PBs along the hybrid protein is shown in Fig. 3a.
Analysis of the hybrid protein suggests that the regular
secondary structures (those associated with PBs m
and d) are clearly detectable: three types of o helices
distinguishable by their sizes (two to four PBs: positions
[38:41]), seven PBs [3:9], and ten PBs [82:91]), as well as
four f strands (positions [15:23], [51:58], [66:69], and
[74:78]). Different transitions between regular secondary
structures are visible: o helix to o helix between positions
[93:96], « helix to f strand [9:14], f strand to « helix
[33:37] and [99:1], and f strand to f strand [23:28],
[58:65], and [69:71].

The specificity of the protein hybrid sites is clear: only
two or three separate PBs occur frequently in each.
Moreover, continuity is maintained. When a local
structure is optimally located in position iy, the proba-
bility is 81% that the next local structure in the protein is
in position iy + 1. The local structures are almost evenly
distributed with a mean of 1115 observations per site
and a range of [237-10401] (Fig. 3b).

3.1.2 Entropy of the PB distribution

Figure 3c represents the entropy computed along the
hybrid protein and shows that each site is highly specific,
with a maximum value of only 2.40 and a minimum of
0.41 (40% of the positions with less than 1.0). Three
categories of entropy can be defined.

The first category involves entropy less than 1.0. This
cluster contains the least variable sites, which corre-
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Fig. 3. The hybrid protein and its characteristics: a the final hybrid
protein, with frequency of each PB: more than 35% in black,
between 35% and 10% in gray, less than 10% in white; b the
number of observations per site along the hybrid protein; ¢ local
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spond to the a helix. We notice in positions [4:13] a
central o helix followed by a specific C cap; these local
structures begin most often with six PB m followed by a
PB n, PB o, PB p, and PB a at sites 10—13. This is noted
mgnopa. The local structures in positions [79:91] are o
helices with an N-cap fklmj,. Since the training uses
local structures ten PB in length, this motif contains the
following types of local structures: fklms, klmg, Img, and
mio. The hybrid protein enables us to obtain a well-
defined f-sheet C cap [20:25] that contains the motif
d4eh as well as such short transitions as the dfk f-sheet C
cap [58:60] and fk [35:36].

The second cluster corresponds to intermediate zones
with an entropy between 1.0 and 1.5. The longest
corresponds to various distorted f sheets with N caps in
positions [48:57], with a local structure of type
iac,d7_,(x = 1,2,3). The two most representative sites
there are an fkl a-helix N cap in sites [1:3] and f§ sheets
with a d,-type local structure at sites [77:78].

entropy computed from PB distribution per site; d root mean
square deviation (rmsd) calculated from the local structures, ten Ca
long, located at every site

After these well-defined regions, the third cluster
groups the high entropy zones (more than 1.5). Four
zones have a higher variability level (entropy more than
1.5) and correspond to long coils or distorted f strands
[26:34] and [38:45], turns between two strands [62:68], or
coils between two o helices, in the presence of f sheets
[94:100].

3.1.3 Structural stability of the hybrid protein

To assess the quality of the learning in terms of
structural homogeneity, we computed the rmsd per site
by superimposing all the complete local structures ten
PBs long (= L) at each site (Fig. 3d). The average rmsd
was 3.14 A. Variability was higher at only six sites (rmsd
more than 5 A) and lower at 14 (rmsd less than 1.0 A)

The zones with the most structural variability were
primarily associated with f-sheet residues. For example,
the local structures located in [19:28] correspond to two
different populations: short d, f sheets leading to
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another f sheet and d4 f§ sheets that may lead to an «
helix. Similarly, local structures [48:57] and [52:61] are
associated with heterogeneous f-sheet lengths. Site 59,
corresponding to local structures [55:64], is composed
of three types of f-sheets: difkopac, dsfklpac and
cydafkopa. Site 75 [71:80] contains primarily a popula-
tion of beedgf ff sheets and another one beginning with
bdcd;. We therefore note that the most structurally
variable zones principally involve f§ sheets and ff-sheet N
or C caps. Because local structures associated at the
same position share some common protein blocks, it is
possible to obtain fuzzy regions in the hybrid protein.

The local structures with low variability are o helices,
such as the following: at site 7 (motif mgno), a-helix N
cap; at site 38 (fklmg), short o helix; at site 79 (d4fklms),
sharp transition between a f§ sheet and an o helix; at site
84 (klmg), an « helix; at site 92 (mscmed,), a central «
helix to a f§ sheet.

Some f structures are also well defined. These include
local structures at the following sites: structures [11:20]
at site 15, which is characterized by an opa succession
going to an N-cap f; site 27 (ehia) going to a N-cap f3;
site 53 (acddd), an N cap for f sheets; site 55, another N
cap, shifted and ended by PB f; site 57, -sheet C cap
finished by PB f; sites 62 and 66 (opa), transition be-
tween two f sheets; site 97, strongly specific cd at the
beginning and f at the end.

Indeed, the well-defined sites are associated not only
with the o helix, but also with short transitions between
two f§ sheets.

3.2 Examples

Three examples of superimpositions of local structures
are shown in Fig. 4. The first, located at site 7,
corresponds to local structures [3:12] and has an rmsd
of 0.3 A and an entropy of 0.43 (Fig. 4a); the second, at
site 73 [69:78], has an rmsd of 3.3 A and an entropy of
0.72 (Fig. 4b); and the third, at site 56 [52:61], has an
rmsd of 6.21 A and an entropy of 1.39 (Fig. 4c) [22].
These three examples show clear differences in their
structural variability. Figure 4d, e, and show the amino
acid occurrence matrix, normalized in Z scores, that is
associated with the local structures in those sites. The
matrix composition for the first site (Fig. 4a, d) is
standard for a central o helix with an overrepresentation
of alanine and other nonpolar residues. The presence of
charged residues (lysine, arginine, and glutamic acid) at
positions 7 and 8 is usually associated with a C cap [26],
and the overrepresentation of glycine and asparagine at
position 10 with a structural breaker. The second site
(Fig. 4b, e) is characterized by the presence of aliphatic
amino acids classically associated with a f§ sheet. The C
cap of the f sheet is generally seen with overrepresen-
tations of polar residues, at position 4 and of isoleucine
and valine at sites 5 to 9. The last motif (Fig. 4c, f) is
structurally fuzzy, but the local structures are globally
similar. The amino acid composition is less informative
than the structure. Only position 8 is highly specific, with
an overrepresentation of glycine and asparagine and
underrepresentation of 17 other amino acids.

—SrEPTLEOINIGEOTMER

—SrEFMATOPOIOAEODMI =

—Er TP T IO PO IR EOOmE =

Fig. 4. Three examples of local structure prototypes: a superim-
position of local structures located in site 7 [positions 3 to 12]; b site
73 [69:78]; ¢ site 56 [52:61]; d to f amino acid frequencies in the
previous positions, normalized into Z scores: Z scores more than
1.96 in black, less than —1.96 in gray, in white otherwise

3.3 Amino acid specificity

The amino acid distribution as transformed into Z
scores for the local structures of the structural database
is shown in Fig. 5a. The conventional propensities of
amino acids in the regular secondary structures are again
seen; these include the overrepresentation of alanine
(positions [2:10] and [81:90]) for the o helices, of the
charged residues (lysine, arginine, and glutamic acid) at
their N caps (positions [9:10] and [87:88]), aliphatic
residues for the f sheets (positions [18:24] and [51:58]),
and glycine (positions [28:32] and [39:42]) within coils.
Interesting amino acid specificities are also present: for
example, phenylalanine is present in one f-sheet C cap
(at positions [55:58]), but is absent from the others
([21:23], [69:70] and [76:78]).

The specificity is much more accentuated than that
found in our analysis of the PBs alone. The KLd profile
computed from the amino acid distributions (Fig. 5b)
shows the most informative sites. The KLd values over
the threshold of 36 (3> of 19 degrees of freedom and a
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Fig. 5. Amino acid specificities:

a amino acid frequencies associated
with every central position of the
prototypes, normalized into Z scores
(more than 1.96 in black, less than
—1.96 in gray, in white otherwise);
b the Kullback—Leibler asymmetric
divergence indices computed from
those amino acid frequencies, shown
for a limit of 4> at 36 for 19 degrees
of freedom and a probability of 0.05;
¢ the £ means clustering on the Z
scores of the amino acid distribution
into 12 clusters, numbered from left
to right and up to down from 1 to
12. The Z scores per amino acid are
shown only in the range [—6; 46].
The amino acids are ranked in this
order: I, V, L, M, A,F, Y, W, C, P,
G,H,S, T,N,Q.D,E,R, K
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probability of 0.05) represent mainly, but not only, o
helices and f sheets; strong transitions are also present,
for example, kl coils in positions [59:60].

Different types of amino acid distributions are re-
vealed when they are clustered into 12 distinct groups
(Fig. 5¢). Some clusters are uninformative; for example,
cluster 1 (25 sites) does not show significant specificity to
amino acids and has many different distinct PBs. Cluster
2 (five sites) contains many glycine and asparagine
overrepresentations with, however, very different PBs
(for example, PBs d, j and m). Cluster 3 (two sites) has
the same type of overrepresentations, but is associated
with greater underrepresentation of other amino acids: it
clearly characterizes structure breakers in PBs i, j, and k.
Clusters 4, 5, and 6 are mainly associated with f sheets;
clusters 7 and 8 with o helices. In cluster 4 (17 sites),
aliphatic amino acids (isoleucine and valine) are over-
represented in N caps and central f sheets. Cluster 5 (12
sites) is composed of PB d and other PBs in f-sheet C
and N caps (from PB a to f). Valine is slightly overrep-
resented, and charged residues are underrepresented.
Cluster 6 (one site at position 58) is a regular f sheet
with strong overrepresentation of nonpolar amino acids
and underrepresentation of polar amino acids. Cluster 7
(ten sites) is an « helix, and, more specifically, the C cap
of an « helix; leucine, methionine, and polar residues are
overrepresented. Cluster 8 (eight sites) shows an over-
representation of alanine, methionine, isoleucine, and
proline, and an underrepresentation of glycine. This
cluster represents only the central o helix. Cluster 9 (15
sites), with its overrepresentation of small polar amino
acids, is specific to such breaker PBs as PBs f, h, a, 1 and
0. Cluster 10 (one site at position 81) is associated with
PB h: aliphatic residues and proline are underrepre-
sented and polar residues strongly overrepresented. In
cluster 11 (three sites) small polar amino acids are
overrepresented and nonpolar amino acids and proline
underrepresented. In cluster 12 (one site at position 70)
glycine is underrepresented and nonpolar residues
overrepresented. For the latter four sites, the principal
PB observed is PB f. There is a difference, however,
between two of these protein clusters: in cluster 11, we
observe PB f in an fkl series and for cluster 12 in an fbd
series.

3.4 Search for common local structures
in two cytochromes P450

Cytochromes P450 have been well described. They show
10-30% sequence similarity but have common structural
fragments that Haseman et al. [27] have characterized
as common secondary structures (a« helix, 39 helix,
7 helix, f sheet, and f bulge). Jean et al. [28] determined
some common structural blocks (CSBs) for different
cytochromes P450 with pairwise comparisons to model a
new cytochrome P450 by homology. Our research
focused on two cytochromes P450: P450gy3 (code name
PDB: 2hpd [29]), a bacterial fatty acid monoxygenase
that is crystallized from Bacillus megaterium, and P450,
(code name PDB: Icpt [30]), from Pseudomonas sp.

We began by using PBs to encode the protein struc-
tures and locating each series of ten blocks in the hybrid
protein. The positions of the two protein local structures
along the hybrid protein are shown in Fig. 6. Note that
most of the local structures are contiguous. Then, we
extracted the common local structures from a dotplot
(see Sect. 2). The characteristics of the 11 local struc-
tures, labeled from I to XI, common to the two cyto-
chromes are reported in Table 2 and their 3D
superimpositions are shown in Fig. 7. Jean et al. found
15 CSBs, which they labeled 1 to 13; 2A-2B and 12A-
12B were clearly in the same local structure but were not
found directly with their method. Our approach, which
uses long local structures (L = 10 PBs), found 11 of these
15 CSBs. It did not detect the following CSBs: 6, 11, and
13 are too short (12, 8, and 9 residues, respectively), CSB
8 is much longer (17 residues, see Discussion). Local
structures I, IV, V, VL VIIL, and IX have approximately
the same length as the corresponding CSB (Table 2).

Examination of common local structures reveals that
these findings diverge from those of Haseman et al. with
common secondary structures [27] for local structures II,
IV, V, VI, and VII, and from those of Jean et al. with
CSBs [28] for local structures II, VII, X, and XI.

PB similarity rates reflect the structural proximity of
the local structures. Globally, they exceed 73%, except
for local structure II, with a rate of only 58.3%. Local
structure II is not one of the CSBs: its rmsd is higher.
The type of local structure is nonetheless quite similar,
especially for the N-cap positions. One lone motif is
present, the 319 helix b, but it is not found in P450gys3
[27]. Local structure IV is composed mainly of « and 39
helices. In the secondary structure classification, how-
ever, a-helix C’ does not exist in P450gMm3 and the two 3
helices b and ¢ are placed at distant positions. This dif-
ference of classification does not result in a poor rmsd
(0.8 A). Local structure V has an rmsd between 450¢crp
and P450gp\3; of 1.8 A. This value is due to the absence in
P450pM3 of m-helix E’, which is instead included entirely
in the a-helix E. This localized distortion increases the
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Fig. 6. Positions indexes of the local structures along two cyto-
chromes P450 in the hybrid proteins P450y, (a) and P450pwm;3 (b)



Table 2. Common local structures found in P450, and P450gus3.
The 11 common local structures, with their number, the beginning
and the end for P450;, and P450py3, the number of residues,
the PBs identity, the amino acid identity, the rmsd from P450.,
and from P450py3; local structures, the correspondence with the
common structural blocks (CSBs) of Jean et al. and finally the
secondary structure description by Haseman et al. In the last
columns, / designates a local structure not found in the CSB; 7 is
for the local structure VI which is only a part of the CSB 4; 2 local
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structure VII shows the same zone as CSB 4 for P450,, but is
distinct for P450g)3; 3 local structure X encompassed CSB 10 and a
part of CSB 9; 4 the label is not found at the same place for one of
the two proteins, but is in the immediate neighborhood (fewer than
50 residues); 5 the label does not exist in one of the two structures;
and 6 the label is found for one of the two proteins a very long way
from the position in the secondary structure classification (more
than 50 residues)

Number P450;crp P450pMm3 Residues PB identity Amino acid rmsd (A) CSB Secondary labels
identity number
I 47-64 45-62 18 88.8 0.0 1.6 1 Bi_2» 2B
1 98-109 81-92 12 58.3 8.0 2.6 / 310 b@
I 105-112 91-98 8 75.0 0.0 1.7 2A o
v 120-141  106-127 22 95.0 18.0 0.7 2B 28, 319 b®, 319 O, o,
v 151-169  139-157 19 89.5 0.0 1.8 3 Bs_i, nS), ax
VI 175-183  178-186 9 88.8 0.0 1.1 40 310 €O, ap
vl 169-180 192203 12 75.0 25.0 3.6 4 310 ¢®), o, o
VIII 209-225 201-217 17 94.1 6.0 0.7 5 oG
IX 246-285  243-282 40 90.0 30.0 1.9 7 Bs 1. Bs_2s 01
X 325-339  340-354 15 733 20.0 1.8 93) +10 Br 1B Bi s
XI 369-396 392-419 28 92.8 25.0 0.7 12A +12B p bulges, ap
rmsd, but the local structure is globally the same. The
(0 (11) (111 problem of the 3¢ helix ¢ recurs in local structure VI,
but this time for P450pm3. For P450.p, local structures
VII and VI both correspond to CSB 4; they are, how-
ever, distinct for P450gms3. Local structure VI corre-
/\@& sponds to CSB 4 (rmsd= 1.1 A), while local structyre
— VII expresses less structural similarity (rmsd = 3.6 A).
The information yielded by the PB similarity rate is very
similar: 75.0% for local structure VII, compared with
(V) R% V1) 88.8% for VI. It must b.e noted, howeyer, that this CSB,
composed of an F helix [27], has different lengths in
different cytochromes: it was the only CSB manually
selected by Jean et al. Local structure X includes CSB 10
and the end of CSB 9. Local structure XI includes CSBs
12A (cysteine pocket [27]) and 12B (L helix [27]), found
separately, but very similar with an rmsd of 0.7 A.

Our results indicate that the hybrid protein is an ef-
fective method for extracting local structures to show
similar local structures in two proteins. A simple dotplot

(VD) (VIIL) (IX) with PBs alone does not allow these local structures to
be easily extracted because the presence of repetitive
structures interferes with the detection. The HPM is
based on fuzzy learning of the series of PBs: every
position of the hybrid protein directly concerns a subset
of similar local structures.

4 Discussion
(X) (XI)

Fig. 7. Superimpositions of the local structure pairs found to be
structurally similar in P450, and P450pwm3

HPM is a new method that allows a structural database
to be compacted. The learning step yields a hybrid
protein with very good sequentiality between the local
structures (81% are contiguous). The entropy shows that
the learning step results in a satisfactory structural
characterization of most of the sites (i.e., every site has
no more than three significant PBs). Because the PBs are
highly specific for each site, similar local structures with
high PB identity are classified in the same hybrid protein
site.
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We have analyzed the influence of particular param-
eters on the results. The first was the length of the hybrid
protein: N = 100 was chosen to enable the local struc-
tures to be characterized correctly. With N > 100, the
hybrid protein sites contain too few local structures, and
for N < 100, the number of poorly approximated local
structures increases dramatically. Another parameter,
o9, controls both the quality and speed of learning. An
o value of 0.10 allows fast, but crude, learning; reducing
the coefficient o during learning leads to the more precise
training of the local structures. A lower o value can be
used, but will require more cycles of learning.

The third parameter we consider involves the random
values for ¢; in the initialization of the hybrid protein
(see Sect. 2): they do not modify the resultant hybrid
protein. We notice only a shift in the hybrid protein,
which remains highly stable. Finally, the C value is de-
fined by the user. In practice, C cycles were performed
until, after numerous database readings, no significant
modification of the hybrid protein was observed. In
conclusion, these parameters have only a minor influ-
ence on the construction of the hybrid protein, both
because of the high sequential dependence between
protein blocks and because of the presence of various
geometrically stable structures (e.g., the repetitive sec-
ondary structures and their N and C caps).

The computation of the rmsd highlights the stability
of most of the local structures. A higher rmsd is due to
the location of both short and long f sheets at the same
sites. Overall the local structures maintain similar pat-
terns. The rmsds of the other sites are correct, despite the
heterogeneity of the structural database. Another feature
that emerges from the structural classification is that
regular structures are not the only local folds that are
well approximated.

The examples given in Fig. 4 represent the three
principal types of structural groups we observed. The
structural description of the first is excellent and includes
significant information about amino acid characteristics
for most of the prototype positions. The second example
is also well described, but only some of the amino acid
positions have significant under- or overrepresentations.
The third type is the least frequent and shows only a few
sites of interest in terms of amino acids. This type, with
its higher rmsd, lacks good structural definition but
nonetheless selects local structures of the same overall
kind. This characterization shows that the clustering by
a HPM correctly categorizes local structure prototypes.

The amino acid characterization shows substantial
specificity at every site. As expected, the KLd revealed
the standard repetitive structures. It also, however,
showed that transitions of coil zones were also highly
specific. This classification indicated that one group (25
sites) had no specificity, either for amino acid sequences
or for PBs. The 75 other sites, therefore, are highly
specific, as the specificity of the PB classes always cor-
roborates. Because, however, the sequence is not always
specific to a local structure [31], a portion of the protein
sequence is uninformative for predictive purposes [32].
Moreover, we note again the importance of some amino
acids in N and C caps [26]. Some particular distributions

of coil structures also depend on the amino acid com-
position.

The results shown in Fig. 7 and Table 2 point out the
interest of the HPM for finding similar local structures
with a good approximation. The PB identity of the 11
local structure pairs was not 100%: instead it varied
from 73.3% to 95.0% except for pair II with 58.3% for a
12-length residue. The amino acid identity was low (less
than 30%), as expected. The differences between the
results from various methods involve more variable
zones, such as local structure II. The divergence from the
secondary structure classification reflects the equivalence
of some short secondary structures in very distinct sites,
without taking into account the modularity of cyto-
chromes P450 for structures such as 3y helix c: positions
[173-176] for P450y;, compared with [109-114] for
P450gy3. Similarly, for P450gym3, local structure V is
composed of a short f sheet, a 7 helix, and a 12-length o
helix; for 4504, the same f sheet is present, but the =
helix is included in an 18-length « helix. The structural
alphabet and the hybrid protein allow this type of fuzzy
clustering. Our method did not find CSB 8, despite its
low rmsd of 1.2 A. Locally, three CSB 8 sites for P450,
and P450py;3 differed in the hybrid protein. It was
therefore, not found with our crude filtering in the dot-
plot method. This point will be taken into account in
future improvements to this approach.

Our approach to searching for structural similarity is
easier and implies neither systematic comparison of
every pairwise local structure nor the use of an optimi-
zation algorithm. The coding and homology steps are
simple and fast.

5 Conclusion

This approach improves our knowledge about local
structure patterns. We observed that the HPM provided
an accurate approximation of the structure of most sites,
and not simply for repetitive structures. Because many
similar local structures are found at each site, the
method should be applied in a threading approach to
simplify the search for an adequate structure. To tackle
the problem of badly approximated sites, the length, L,
of local structures and the length, N, of the hybrid
protein might be modified. The learning step and the
computation of structural stability (i.e., rmsd) were
carried out with the same values (i.e., L = 10 PBs and
N =100); using variable lengths might improve the
structural characterization. Thus Baker and Bystroff [17]
used a structural alphabet with variable lengths and
improved their ab initio modeling [33]. The main interest
of our approach is that it takes into account the
sequentiality of the PBs and thus implicitly that of the
amino acids. This can be most useful for a prediction
method. As our example of the two cytochromes P450
shows, the application of HPM to homology modeling
has important potential. It will be very useful for ab
initio prediction methods and molecular modeling by
homology, especially when used with our improved
Bayesian method prediction.
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